

DI# language

User guide
19/4/2016

 Canada • France • Russia

 dialoginsight.com

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

1

Table of contents

Basic syntax ... 3

The DI# tags .. 3

Escaping from HTML .. 3

Instructions delimiters .. 4

Comments ... 4

Variable types ... 4

Introduction .. 4

Type extensions .. 5

string ... 5

int ... 7

decimal .. 7

datetime .. 7

bool ... 8

timespan ... 8

Arrays and collections .. 8

Introduction ... 8

Declaration .. 8

Operators ... 9

Comparison operators .. 9

Simple operators .. 9

Complex operators ... 10

Mathematical operators .. 11

Array operators ... 11

Unitary operators ... 11

Batch operators .. 12

Variable scope .. 12

Query expressions ... 12

Usage ... 13

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

2

Examples .. 13

Important notes .. 14

Flow control .. 15

if .. 15

else .. 15

if/else shorthand.. 16

while ... 16

foreach ... 17

Array iterator ... 17

Using a complex expression .. 17

Iterating with a counter .. 18

break .. 18

switch ... 18

continue .. 20

return ... 20

Functions ... 21

Declaration .. 21

Calling .. 21

Variable scope ... 22

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

3

Basic syntax

The DI# tags

When the compiler processes code, it looks for these opening and closing tags [[and]]
indicating the boundaries of the code that needs to be parsed. Everything outside the
DI# opening and closing tags is ignored. Inside those tags, if you want to display
simple text that should not to be interpreted as code, you can use the
output.write(…); method. If there is only a single operation between the tags, you
can use the [[=… ;]] shortcut.

Example :
The following code [[="text";]] is a shortcut for [[output.write("text");]]

Escaping from HTML

Everything outside the opening/closing tags is ignored by the compiler, which allows
DI# code with mixed contents. DI# code can be inserted in HTML documents to create
templates, among other things.

<p>This will be ignored by the compiler and displayed by the browser.</p>

[[="This will be analyzed by the DI# compiler.";]]

<p>This will also be ignored by the compiler and displayed by the

browser.</p>

or
<p>This will be ignored by the compiler and displayed by the browser.</p>

[[output.write("This will be analyzed by the DI# compiler.");]]

<p>This will also be ignored by the compiler and displayed by the

browser.</p>

Example : Advanced escaping using conditions

[[if(a > b){]]

 This will be displayed if the expression is true.

[[} else {]]

 Otherwise, this will displayed.

[[}]]

or
[[

if(a > b)

{

 output.write("This will be displayed if the expression is true.");

}

else

{

 output.write("Otherwise, this will be displayed.");

}

]]

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

4

In this example, the compiler will ignore blocks where the condition is not met, even if
they're outside the DI# opening/closing tags. If the above condition is true, all the
code contained in the else condition will not be evaluated since the DI# interpreter will
skip the blocks where the condition is false.

Instructions delimiters

Like C#, Perl or PHP, the DI# language requires instructions to be terminated by a
semicolon. The closing tags do not imply the end of a statement, the semicolon is
mandatory.

Comments

DI# allows for two types of comments: single-line or multiline. Single-line comments
can be an entire line or just the last part of one. Begin your comment with // and
everything for there to the end of the line will be ignored by the compiler. Multiline
comments can stretch over a large chunk of code. Begin your comment with /* and
finish it with */ Everything in-between will be ignored by the compiler.

Variable types

Introduction
Declaration Type Definition

string Characters
string

A Unicode character string, each character is stored using 2 bytes.

int Integer
number

A 32-bit integer number between -2 147 483 648 and 2 147 483 647.

decimal

Decimal
number

High precision floating point numbers (28-29 significant digits). Values
range from (-7.9x1028)/(10028) to (7.9x1028)/(10028).

datetime

Date and time Specifies a date and time with the following format:
yyyy.MM.dd hh:mm:ss

bool

Boolean A boolean value can be either TRUE or FALSE.

timespan Time span Contrary to some other languages, timespan represents an amount of
time, whether it's days, hours, minutes or seconds.
This type exists primarily to perform operations datetime variables.
Example: timespan t = date1 – date2 ;
Note: To directly assign a timespan variable, you must specify a value
corresponding to a number of days (for example, 2.25 if you want to
represent 2 days and 6 hours).

datasource

Data source Any type of data listed in this grid, or any complex data type like arrays,
lists, dictionaries, etc. (similar to the var data type in C#)

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

5

In order to be compatible with projects or relational tables that include nullable fields,
some of the data types allow for null values. However, we strongly advise against
using nullable types in your code, in order to reduce the risks of execution error.

Note: For certain data types (int, decimal, datetime) the DI# language allows values
larger than what is supported by the database, meaning that it's possible to create a
variable containing a value that cannot be stored in a database field of the same type
as the variable. Refer to the projects and relational tables documentation to make sure
of what the database limits are.

Example:

string a = "text";

int b = 1;

decimal c = 1.234;

datetime d1 = 2016.01.01 12:34:56;

datetime d2 = 2016.01.01;

bool e = true; // or false or null

timespan g = 2.25; // 2 days and 6 hours

datasource h = {1, 2, 3};

Type extensions

The DI# language implements several methods allowing for easy manipulation of the
basic data types (string, int, etc.).

string
Property or
method

Returned
type

Description

Length int Returns the number of characters in a string object.

Capitalize(…) string MyText.Capitalize() Puts the 1st letter of the string in

uppercase. MyText.Capitalize(true) Puts the 1st letter of
every word of the string in uppercase.

IndexOf(…) int MyText.IndexOf("find") Returns the position of the 1st
occurrence of the string passed as a parameter within the searched
string.

LastIndexOf(…) int MyText.LastIndexOf("find") Returns the position of the last
occurrence of the string passed as a parameter within the searched
string.

Left(n) string Returns the first n characters from the left of the string. Equivalent to
MyText.Substring(0,n)

Right(n) string Returns the first n characters from the right of the string.
Equivalent to MyText.Substring(MyText.Length-n,n)

Replace(…) string MyText.Replace("find","replace") Returns a new string
object where all occurrences of the 1st parameter string have been
replaced with the 2nd parameter string.

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

6

Substring(…) string MyText.Substring(start,length) Extracts part of the original
string, starting at the 1st parameter index, for the number of characters

specified in the 2nd parameter. MyText.Substring(start)
Extracts the characters from the original string, starting at a specific
position, to the end of the string.

ToLower() string Converts all characters from a string to lowercase.

ToUpper() string Converts all characters from a string to uppercase.

Trim() string Removes all leading and trailing spaces from the string.

Examples:
[[

string MyText = "this is a CHARACTER string ";

MyText.Length;

// Returns 28

MyText.Capitalize(true);

// Returns "This Is A CHARACTER String "

MyText.Capitalize(); // or MyText Capitalize(false);

// Returns "This is a CHARACTER string "

MyText.IndexOf("s");

// Returns 3

MyText.LastIndexOf("s");

// Returns 20

MyText.Left(12);

// Returns "this is a CH"

MyText.Right(12);

// Returns "TER string "

MyText.Replace("CHARACTER", "test");

// Returns "this is a test string "

MyText.Substring(12);

// Returns "TER string "

MyText.Substring(12, 3);

// Returns "TER"

MyText.ToLower();

// Returns "this is a character string "

MyText.ToUpper();

// Returns "THIS IS A CHARACTER STRING "

MyText.Trim();

// Returns "this is a CHARACTER string"

]]

Note that based on the data type of the value returned by these methods and
properties, you can chain other methods and properties. For example :
[[

string MyText = "this is a CHARACTER string ";

MyText.Trim().Replace("CHARACTER ", "test").Capitalize();

// Returns "This is a test string"

]]

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

7

int
Property or
method

Returned
type

Description

ToString() string Returns the value of the object as a character string.

decimal
Property or
method

Returned
type

Description

ToString() string Returns the value of the object as a character string.

datetime
Property or
method

Returned
type

Description

AddYears(n) DateTime Adds n years to the original date.

AddMonths(n) DateTime Adds n months to the original date.

AddDays(n) DateTime Adds n days to the original date.

AddHours(n) DateTime Adds n hours to the original date.

AddMinutes(n) DateTime Adds n minutes to the original date.

AddSeconds(n) DateTime Adds n seconds to the original date.

DateDiff(d) Timespan Subtracts the d date from the original date and returns a timespan.

isDST() bool Returns true if the original date is using Daylight Savings Time, based on
the culture of the execution context.

ToString(…) string Returns the value of the object as a character string. The result can be
formatted using customization parameters. For more details:
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

Date DateTime Returns a new date composed only of the year/month/day of the
original date. Hours/minutes/seconds are ignored.

Year int Returns the year part of the original date.

Month int Returns the month number (1 to 12) of the original date.

Day int Returns the day of the month (1 to 31) of the original date.

DayOfYear int Returns the day of the year (1 to 365) of the original date.

DayOfWeek int Returns the day of the week (Sunday = 1, Saturday = 7) of the original
date.

Hour int Returns the hour part (0 to 23) of the original date.

Minute int Returns the minute part (0 to 59) of the original date.

Second int Returns the second part (0 to 59) of the original date.

Ticks int Returns the number of ticks elapsed between January 1st, 0001 and the
original date. 1 second = 10 000 000 ticks.

https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

8

[[

datetime MyDate = 2016.01.01 12:34:56;

MyDate.AddYears(3); // Returns 2019.01.01 12:34:56

MyDate.AddMonths(3); // Returns 2016.04.01 12:34:56

MyDate.AddDays(3); // Returns 2016.01.04 12:34:56

MyDate.AddHours(3); // Returns 2016.01.01 15:34:56

MyDate.AddMinutes(3); // Returns 2016.01.01 12:37:56

MyDate.AddSeconds(3); // Returns 2016.01.01 12:34:59

MyDate.DateDiff("2014.03.03").Days; // Returns 669

MyDate.isDST(); // Returns False

MyDate.ToString(); // Returns "2016.01.01 12:34:56"

MyDate.ToString("d/M/yyyy HH:mm:ss"); // Returns "1-1-2016 12:34:56"

MyDate.ToString("F"); // Returns "1 January 2016 12:34:56"

MyDate.ToString("ddd, dd MMM yyyy HH':'mm':'ss 'GMT' ");

 // Returns "Friday., 01 January. 2016 12:34:56 GMT"

MyDate.Date; // Returns 2016.01.01 00:00:00

MyDate.Day; // Returns 1

MyDate.DayOfWeek; // Returns 5

MyDate.DayOfYear; // Returns 1

MyDate.Hour; // Returns 12

MyDate.Minute; // Returns 34

MyDate.Month; // Returns 1

MyDate.Second; // Returns 56

MyDate.Ticks; // Returns 635872484960000000

MyDate.Year; // Returns 2016

]]

bool
Property or
method

Returned
type

Description

ToString() string Returns the character string "True" or "False".

timespan
Property or
method

Returned
type

Description

ToString() string Returns the value of the object as a character string.

Arrays and collections

Introduction
A DI# array is a container for one or more variables, associating keys with values in an
ordered way. It can be used for simple lists, dictionaries, or more complex purposes
like hash tables, queues and more. The value of an array element can be a single
variable, a list or a multidimensional array. The data type of each element in an array
can be fixed or dynamic (the same way List<datatype> works in any .NET language).

Declaration

A typical array declaration in DI# looks like this: { value1, value2, value3 }

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

9

Example :
datasource myArray = { 1, 2, 3, "abc", "def" };

You can define a collection of named elements like this:
{ fieldName1 : value1, fieldName2 : value2, fieldName3 : value3 }

Example :
datasource myDictionary = { FirstName:"John", Name:"Smith", Age:30 };

An element's value is an expression, which itself can contain other expressions like in
this example:

datasource myArray =

{

 { FirstName: "Jean", Name: "Tremblay", Age : 40 },

 { FirstName: "John", Name: "Smith", Age : 30 }

};

An array can be declared with a fixed length (int a[10];) or with a variable length

(string b[];).

Examples :
string a[] = {"text1", "text2", "text3"};

int b[] = {1, 2, 3};

decimal c[] = {1.111, 2.222, 3.333};

datetime d[] = {2016.01.01 01:01:01, 2016.02.02 02:02:02};

bool e[] = {true, false, null};

timespan g[] = {1472500, 1472500};

datasource h[] = {123, "text", 1.111, 2016.01.01 01:01:01, true};

Once an array is declared, it can only accept values of the type specified. For example,

an array declared int a[10] will only accept integer values.

Operators

Comparison operators

Simple operators
 ==
 !=
 <
 <=
 >
 >=

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

10

Example Description Result

a == b Equal to TRUE if a equals b

a != b Different than TRUE if a is not equal to b

a < b Lesser than TRUE if a is lesser than b but not equal

a <= b Lesser or equal to TRUE if a is lesser or equal to b

a > b Greater than TRUE if a is greater than b but not equal

a >= b Greater or equal to TRUE if a is greater or equal to b

Contrary to some languages like PHP, these operators cannot be used on string
variables. DI# does not support "alphabetical order" comparisons like "abc"<"bcd" that
other languages allow.

Complex operators
LIKE (and its opposite NOT LIKE) evaluates a character string based on pattern
matching, with the % symbol being used as a wildcard that replaces any number of
consecutive characters.

- LIKE "a%" will return TRUE if the string value begins with "a".
- LIKE "%a" will return TRUE if the string value ends with "a".
- LIKE "%a%" will return TRUE if the string contains "a" anywhere in it, including

at the beginning or at the end.
- LIKE "th%s" will return TRUE if the string starts with "th" and ends with "s", no

matter how many characters are between. "this", "thus", "thanks" would all fit.
- LIKE "abc" with no wildcard (%) has the same effect as the equal operator (==).

CONTAINS (and its opposite NOT CONTAINS) searches inside a string value for the
occurrence of a specific character string.

- CONTAINS "abc" will return TRUE if the string value contains "abc" somewhere
inside the string, including at the beginning or at the end. It has the same effect
as LIKE "%abc%".

- CONTAINS only applies to character strings. It cannot be used to determine
whether an array or a list contain a specific value.

IS NULL (and its opposite IS NOT NULL) tests if a variable contains a value or not.
Note that in the case of a string variable, an empty value ("") is NOT the same as a
NULL value. A NULL value is when a variable has not been assigned a value at all.

Examples:
string a = "this is a test";

output.write(a contains "this" ? true : false); // Returns True

output.write(a like "this" ? true : false); // Returns False

output.write(a like "this%" ? true : false); // Returns True

output.write(a is null ? true : false); // Returns False

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

11

Mathematical operators

Supported operators:

 Division : /
 Multiplication : *
 Modulo : %
 Addition : +
 Subtraction : -

Example :

Example Name Result

a + b Addition Sum of a and b

a - b Subtraction Remainder of b taken away from a

a * b Multiplication a multiplied by b

a / b Division a divided by b

a % b Modulo Take b away from a as many times as
possible, the modulo is the remainder (will
always be an integer number lesser than b).

Note: The negation operator is not supported when applied to variables. The -b
expression will not compile, try multiplying by -1 instead (b * -1). Because of this, a
subtraction written a-b will not compile unless you leave a space after the minus sign (a
- b will compile just fine).

Array operators

Unitary operators

 Set the value of an item at a specific position of an array:

x[0] = 123; // the value of the 1st item (index 0) is now 123

 Add an item at the end of a dynamic-size array:

x += "test"; // add an item "test" at the end of an array of strings

 Delete a value from a dynamic-size array:

x -= "test"; // all items with the value "test" will be removed

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

12

Batch operators

 Assign multiple values with a single instruction:
x = { "blue", "red", "green" };

// x now contains 3 items - "blue", "red" and "green"

 Add multiple items at the end of a dynamic-size array:
x += { "orange", "pink", "yellow" }; // x now contains 6 items

// "blue", "red", "green", "orange", "pink" and "yellow"

 Delete multiple values from a dynamic-size array:
x -= { "blue", "pink"};

// all items with the value "blue" or "pink" will be removed

All the above examples assume that you are using values of the correct data type for
the array being modified.

Variable scope

The scope of a variable depends on the context in which it has been declared. A
variable defined at the code root will be visible for the entire script, and a variable
declared in a function will be limited to that function. You can think of a variable's
context as being delimited by { and }. Any variable declared inside curly brackets has
a local scope.

Example :
[[

int x = 123; // global scope

string MyFunction(string value)

{

 int y = 456; // local scope

 x = x + 1; // global variables can be accessed in a function

}

]]

Query expressions

Query expressions can be used to fetch and transform information from any complex
data source. These queries can retrieve, sort and filter an array (dictionary, list, etc.).
Their goal is, starting from an array, to create a new data source that:

 Filters the original array (WHERE clause)
 Sorts the original array (ORDER BY clause)
 Extracts a specific property from items in the original array
 Deduplicates items (DISTINCT option)

javascript:void(0)

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

13

Usage

Query element Description

Select

Specifies the values to extract from the data source.
Use the distinct option if you only wish to return unique values.

From Identifies the data source to which the query is applied.

Where Allows the filtering of results using inclusion or exclusion rules.

Order by

Sorts the data according to one or more fields, in ascending or descending order.
Supported keywords: asc, ascending, desc, descending.

All these elements come together like this:

select identifier.property1

from identifier in expression

where identifier.property2 = value

order by (identifier.property3 asc)

expression: the structure from which the data will be extracted (array, collection, etc.)

identifier: the name of the variable that will be used to refer to the data source (in

the select, where and order by clauses).

Examples

Let's suppose the following data source:
[[

datasource Vehicles =

{

 { Brand: "Toyota", Model: "Sienna", Year: 2015},

 { Brand: "Ford", Model: "Fusion", Year: 2013},

 { Brand: "Chevrolet ", Model: "Equinox", Year: 2005 },

 { Brand: "Hyundai", Model: "Accent", Year: 2016 },

 { Brand: "Mazda", Model: "CX-5", Year: 2015 },

 { Brand: "Hyundai", Model: "Accent", Year: 2010 },

};

]]

To select the brands of all the vehicles:
[[

datasource Brands = select car.Brand from car in Vehicles;

]]

The resulting Brands object would contain:
Toyota

Ford

Chevrolet

Hyundai

Mazda

Hyundai

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

14

To select the unique brands (without duplicates) of all the vehicles:
[[

datasource Brands = select distinct car.Brand from car in Vehicles;

]]

The resulting Brands object would contain:
Toyota

Ford

Chevrolet

Hyundai

Mazda

To select the unique brands of all the vehicles, from the most recent to the oldest:
[[

datasource Brands = select distinct car.Brand from car in Vehicles

order by (car.Year desc);

]]

The resulting Brands object would contain:
Hyundai

Mazda

Toyota

Ford

Chevrolet

To select the unique brands of all the vehicles, from the most recent to the oldest,
excluding those from before 2014 :
[[

datasource Brands = select distinct car.Brand from car in Vehicles

where (car.year > 2014) order by (car.Year desc);

]]

The resulting Brands object would contain:
Hyundai

Mazda

Toyota

Note that it's possible to clone an array by selecting all its items:
[[

datasource VehiclesCopy = select car from car in Vehicles;

]]

Important notes

Although they are powerful, the data source query features come at a huge
performance cost. If used incorrectly in a message, these queries can have an
important impact on the speed at which messages are prepared. A single query placed
in a message sent to a million contacts will have to be processed a million times. Don't
hesitate to ask our support team or our analysts for advice when creating messages
requiring this level of complexity.

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

15

Flow control

if

The if instruction is one of the most important keywords in any programming language.
It allows the conditional execution of a code block. In DI#, if works the same way as in
most languages:

if (expression)

{

 command1;

 command2;

}

or if (expression)

 command;

expression must return a boolean value. If it evaluates to TRUE the associated code

block will be executed, if it evaluates to FALSE the commands will be ignored. In the
example below, the sentence "a is larger than b" will be shown only if a is larger than b.

[[

int a = 1;

int b = 2;

if (a > b)

 output.write("a is larger than b");

]]

You can insert if statements inside other if statements, allowing for great flexibility
when it comes to selecting code execution based on a large number of parameters.

else

You will often need to execute some commands if a particular condition is met, and
some other commands if it isn't. The else keyword is used after an if and provides a

code block to be executed when the expression evaluates to FALSE. In the example

below the sentence "a is larger than b" will be shown only if a is larger than b, and the
sentence "a is smaller or equal to b" if it isn't.

[[

int a = 1;

int b = 2;

if (a > b)

{

 output.write("a is larger than b");

} else {

 output.write("a is smaller or equal to b");

}

]]

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

16

if/else shorthand

Like in C#, it is possible to abbreviate an if-else statement by using the ?: operator.

(condition) ? (expression_if_true) : (expression_if_false);

Example :

[[

int a = 1;

int b = 2;

output.write((a > b) ? "a is larger than b" : "no it's not");

]]

Note: Due to limitation in the DI# compiler, make sure that you place the condition

between parentheses when using this operator.

while

The while instruction is the simplest way to implement a code loop in DI#. This
command behaves the same way as in C.

while (expression)

{

 command1;

 command2;

}

or while (expression)

 command;

The following example displays the numbers 1 through 10:

[[

int a = 1;

while (a <= 10)

{

 output.write(a);

 a += 1;

}

]]

Note: Pay particular attention to the management of the variable on which the

condition is based, to avoid creating endless loops. As a safety measure, DI# while

statements are limited to 250 iterations.

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

17

foreach

Array iterator

The foreach statement provides a simple way of going through elements of an array.

foreach (identifier in expression)

{

 command1;

 command2;

}

or foreach (identifier in expression)
 command;

identifier is the chosen name for the variable holding the value of each individual

item contained in expression as we go through the loops. This variable will be of the

same data type as the values in the array. The example below shows how to display all
the elements of a simple array of integer numbers:

[[

int myArray[] = { 1, 2, 3, 4, 5};

foreach(number in myArray)

{

 output.write(number);

}

]]

Using a complex expression

Since a foreach allows iterating through any array resulting from the evaluation of an
expression, it's possible to use complex expressions directly in the foreach statement:

[[

datasource myArray =

{

 { FirstName : "Jean", LastName : "Tremblay", Age : 40 },

 { FirstName : "John", LastName : "Smith", Age : 30 }

};

foreach(Namevalue in

 (select item.LastName

 from item in myArray

 order by (item.Age)))

{

 output.write("Last name: " + Namevalue);

}

]]

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

18

Iterating with a counter

As it's the case in several programming languages, it is possible to maintain a counter
while going through the foreach loop:

foreach (counter => identifier in expression)

 command ;

counter is the name of a variable that will contain an integer number starting at 0 that

will be incremented by 1 each time a new identifier is fetched from expression.

[[

int myArray[] = { 1, 3, 5, 7, 9};

foreach(itemOrder => number in myArray)

{

 output.write("position : " + itemOrder);

 output.write("value : " + number);

}

]]

Note: Like the while statement, a foreach loop is limited to 250 iterations.

break

The break command is used to terminate a foreach or while loop before all its elements
have been processed. The example below stops the execution of the foreach after the
number 3 has been processed:

[[

int myArray[] = { 1, 2, 3, 4, 5};

foreach(number in myArray)

{

 output.write(number);

 if (number == 3)

 break;

}

]]

switch

The switch statement is the equivalent to a series of if instructions based on the same
expression. In some situations, you will need to test the value of a variable and provide
several code blocks to be executed according to the possible values of that variable.
The switch statement is built specifically for that purpose.

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

19

switch (expression)

{

 case value1:

 {

 command1;

 command2;

 }

 case value2:

 {

 command3;

 command4;

 }

}

or switch (expression)

{

 case value1:

 command1;

 case value2:

 command2;

}

Both examples below are ways of achieving the same effect, one with a series of if
statements, the other with a switch:

[[

int i = 0;

if (i == 0)

 output.write("i equals 0");

if (i == 1)

 output.write("i equals 1");

if (i == 2)

 output.write("i equals 2");

switch (i)

{

 case 0:

 output.write("i equals 0");

 case 1:

 output.write("i equals 1");

 case 2:

 {

 output.write("i equals 2");

 output.write("for real!");

 }

}

]]

Contrary to other programming languages, it is not necessary in DI# to use the break
instruction to end the various case blocks inside your switch. Once a case is reached,
the commands it contains will be executed and the compiler will exit the switch
statement. There is also no default statement in the DI# version of switch, if no case
match the branching expression, no code will be executed.

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

20

continue

The continue command is used inside a foreach or while, and forces that loop to begin
processing the next item immediately without executing any of the remaining
commands for the current iteration. The example below will display every number
contained in the array except for 3, since the continue keyword will trigger the
beginning of the next loop immediately, skipping the output.write command.

[[

Datasource myArray[] = { 1, 2, 3, 4, 5};

foreach(number in myArray)

{

 if (number == 3)

 continue;

 output.write(number);

}

]]

return

The return command forces the current module to exit and hands back control to the
part of the program that had called it, resuming code execution at the next line of the
calling module. If return is called from inside a function it terminates that function
immediately. If return is called from the main program, code execution is terminated
completely.

Return accepts a single optional parameter that, if present, becomes the return value of
the function being terminated. In the example below, return stops the execution of

checkNumber and returns a value to the main program that gets stored in the result

variable.

[[

string checkNumber(int x)

{

 if (x == 0)

 return "x equals 0";

 if (x == 1)

 return "x equals 1";

 if (x == 2)

 return "x equals 2";

}

string result = checkNumber(1);

output.write(result);

// displays "x equals 1"

]]

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

21

Functions

Declaration

Function declaration in DI# follows the same basic structure as in C.

[Type] [Name] ([Parameter1], [Parameter2], etc.)

{

Commands;

}

Functions must be defined at the root code level. They cannot be defined inside
another function or inside any curly-bracket-delimited scope ({ }).

Example of a simple function declaration, with 2 integer parameters and an integer
return value:

int addNumbers (int x, int y)

{

 return x + y;

}

Example of function declaration with a default parameter value:

void OutputWithHTMLTag (string value, string Tag = "B")

{

 if (value is null)

 return;

 Output.write("<" + Tag + ">" + value + "</" + Tag + ">");

}

Note: A function can return any data type (string, int, decimal, etc.), but if your
function declaration specifies a return type the function itself HAS to return a value of
the specified data type no matter how it terminates its execution.

The return type of a function can be void, in which case a simple return statement
without any parameters is sufficient to end the function's execution, or reaching the end
of the function's commands.

Calling

A function get called like any other programming language:

functionName(params) or functionName ()

© 2016 – DIALOG INSIGHTMD – ALL RIGHTS RESERVED

 www.dialoginsight.com

DI# language

User guide

22

A void function (without a return value) can be used as a simple statement inside a
function or any code block:

OutputWithTags("my text", "i");

Functions with a return value of any type other than void can be used as expressions or
values:

int x = addNumbers(1,1);
if (addNumbers(x,y) > z) continue;

Variable scope

Like it has been mentioned before, variables declared inside functions are visible only
for that scope. Global variables declared at the root code level are visible everywhere.

Contact
Canada : 1 866 529-6214

France : 01 84 88 40 66

Russia : +7 (495) 226-04-11

t
Email : info@dialoginsight.com

Web site : www.dialoginsight.com

Blog : academie.dialoginsight.com

@DialogInsight

Dialog Insight

tel:+15143124325
mailto:info@dialoginsight.com
http://www.dialoginsight.com/
http://academie.dialoginsight.com/

